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2.7 LU-Factorization15

The solution to a system Ax = b of linear equations can be solved quickly if A can be factored
as A = LU where L and U are of a particularly nice form. In this section we show that gaussian
elimination can be used to find such factorizations.

Triangular Matrices

As for square matrices, if A =
[
ai j

]
is an m×n matrix, the elements a11, a22, a33, . . . form the main

diagonal of A. Then A is called upper triangular if every entry below and to the left of the main
diagonal is zero. Every row-echelon matrix is upper triangular, as are the matrices 1 −1 0 3

0 2 1 1
0 0 −3 0

  0 2 1 0 5
0 0 0 3 1
0 0 1 0 1




1 1 1
0 −1 1
0 0 0
0 0 0


By analogy, a matrix A is called lower triangular if its transpose is upper triangular, that is if
each entry above and to the right of the main diagonal is zero. A matrix is called triangular if it
is upper or lower triangular.

Example 2.7.1

Solve the system
x1 + 2x2 − 3x3 − x4 + 5x5 = 3

5x3 + x4 + x5 = 8
2x5 = 6

where the coefficient matrix is upper triangular.

Solution. As in gaussian elimination, let the “non-leading” variables be parameters: x2 = s
and x4 = t. Then solve for x5, x3, and x1 in that order as follows. The last equation gives

x5 =
6
2 = 3

Substitution into the second last equation gives

x3 = 1− 1
5t

Finally, substitution of both x5 and x3 into the first equation gives

x1 =−9−2s+ 2
5t

The method used in Example 2.7.1 is called back substitution because later variables are
substituted into earlier equations. It works because the coefficient matrix is upper triangular.

15This section is not used later and so may be omitted with no loss of continuity.
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Similarly, if the coefficient matrix is lower triangular the system can be solved by forward sub-
stitution where earlier variables are substituted into later equations. As observed in Section 1.2,
these procedures are more numerically efficient than gaussian elimination.

Now consider a system Ax = b where A can be factored as A = LU where L is lower triangular
and U is upper triangular. Then the system Ax = b can be solved in two stages as follows:

1. First solve Ly = b for y by forward substitution.

2. Then solve Ux = y for x by back substitution.

Then x is a solution to Ax = b because Ax = LUx = Ly = b. Moreover, every solution x arises this
way (take y =Ux). Furthermore the method adapts easily for use in a computer.

This focuses attention on efficiently obtaining such factorizations A = LU . The following result
will be needed; the proof is straightforward and is left as Exercises 2.7.7 and 2.7.8.

Lemma 2.7.1
Let A and B denote matrices.

1. If A and B are both lower (upper) triangular, the same is true of AB.

2. If A is n×n and lower (upper) triangular, then A is invertible if and only if every main
diagonal entry is nonzero. In this case A−1 is also lower (upper) triangular.

LU-Factorization

Let A be an m× n matrix. Then A can be carried to a row-echelon matrix U (that is, upper
triangular). As in Section 2.5, the reduction is

A → E1A → E2E1A → E3E2E1A → ··· → EkEk−1 · · ·E2E1A =U

where E1, E2, . . . , Ek are elementary matrices corresponding to the row operations used. Hence

A = LU

where L = (EkEk−1 · · ·E2E1)
−1 = E−1

1 E−1
2 · · ·E−1

k−1E−1
k . If we do not insist that U is reduced then,

except for row interchanges, none of these row operations involve adding a row to a row above it.
Thus, if no row interchanges are used, all the Ei are lower triangular, and so L is lower triangular
(and invertible) by Lemma 2.7.1. This proves the following theorem. For convenience, let us say
that A can be lower reduced if it can be carried to row-echelon form using no row interchanges.

Theorem 2.7.1
If A can be lower reduced to a row-echelon matrix U , then

A = LU
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where L is lower triangular and invertible and U is upper triangular and row-echelon.

Definition 2.14 LU-factorization
A factorization A = LU as in Theorem 2.7.1 is called an LU-factorization of A.

Such a factorization may not exist (Exercise 2.7.4) because A cannot be carried to row-echelon
form using no row interchange. A procedure for dealing with this situation will be outlined later.
However, if an LU-factorization A = LU does exist, then the gaussian algorithm gives U and also
leads to a procedure for finding L. Example 2.7.2 provides an illustration. For convenience, the first
nonzero column from the left in a matrix A is called the leading column of A.

Example 2.7.2

Find an LU-factorization of A =

 0 2 −6 −2 4
0 −1 3 3 2
0 −1 3 7 10

.

Solution. We lower reduce A to row-echelon form as follows:

A =

 0 2 −6 −2 4
0 −1 3 3 2
0 −1 3 7 10

→

 0 1 −3 −1 2
0 0 0 2 4
0 0 0 6 12

→

 0 1 −3 −1 2
0 0 0 1 2
0 0 0 0 0

=U

The circled columns are determined as follows: The first is the leading column of A, and is
used (by lower reduction) to create the first leading 1 and create zeros below it. This
completes the work on row 1, and we repeat the procedure on the matrix consisting of the
remaining rows. Thus the second circled column is the leading column of this smaller
matrix, which we use to create the second leading 1 and the zeros below it. As the
remaining row is zero here, we are finished. Then A = LU where

L =

 2 0 0
−1 2 0
−1 6 1


This matrix L is obtained from I3 by replacing the bottom of the first two columns by the
circled columns in the reduction. Note that the rank of A is 2 here, and this is the number of
circled columns.

The calculation in Example 2.7.2 works in general. There is no need to calculate the elementary
matrices Ei, and the method is suitable for use in a computer because the circled columns can be
stored in memory as they are created. The procedure can be formally stated as follows:
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LU-Algorithm

Let A be an m×n matrix of rank r, and suppose that A can be lower reduced to a
row-echelon matrix U . Then A = LU where the lower triangular, invertible matrix L is
constructed as follows:

1. If A = 0, take L = Im and U = 0.

2. If A 6= 0, write A1 = A and let c1 be the leading column of A1. Use c1 to create the first
leading 1 and create zeros below it (using lower reduction). When this is completed,
let A2 denote the matrix consisting of rows 2 to m of the matrix just created.

3. If A2 6= 0, let c2 be the leading column of A2 and repeat Step 2 on A2 to create A3.

4. Continue in this way until U is reached, where all rows below the last leading 1 consist
of zeros. This will happen after r steps.

5. Create L by placing c1, c2, . . . , cr at the bottom of the first r columns of Im.

A proof of the LU-algorithm is given at the end of this section.
LU-factorization is particularly important if, as often happens in business and industry, a series

of equations Ax = B1, Ax = B2, . . . , Ax = Bk, must be solved, each with the same coefficient matrix
A. It is very efficient to solve the first system by gaussian elimination, simultaneously creating an
LU-factorization of A, and then using the factorization to solve the remaining systems by forward
and back substitution.

Example 2.7.3

Find an LU-factorization for A =


5 −5 10 0 5

−3 3 2 2 1
−2 2 0 −1 0

1 −1 10 2 5

.

Solution. The reduction to row-echelon form is
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
5 −5 10 0 5

−3 3 2 2 1
−2 2 0 −1 0

1 −1 10 2 5

→


1 −1 2 0 1
0 0 8 2 4
0 0 4 −1 2
0 0 8 2 4



→


1 −1 2 0 1

0 0 1 1
4

1
2

0 0 0 −2 0

0 0 0 0 0



→


1 −1 2 0 1

0 0 1 1
4

1
2

0 0 0 1 0

0 0 0 0 0

=U

If U denotes this row-echelon matrix, then A = LU , where

L =


5 0 0 0

−3 8 0 0
−2 4 −2 0

1 8 0 1



The next example deals with a case where no row of zeros is present in U (in fact, A is invertible).

Example 2.7.4

Find an LU-factorization for A =

 2 4 2
1 1 2

−1 0 2

.

Solution. The reduction to row-echelon form is 2 4 2
1 1 2

−1 0 2

→

 1 2 1
0 −1 1
0 2 3

→

 1 2 1
0 1 −1
0 0 5

→

 1 2 1
0 1 −1
0 0 1

=U

Hence A = LU where L =

 2 0 0
1 −1 0

−1 2 5

.
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There are matrices (for example
[

0 1
1 0

]
) that have no LU-factorization and so require at least

one row interchange when being carried to row-echelon form via the gaussian algorithm. However,
it turns out that, if all the row interchanges encountered in the algorithm are carried out first, the
resulting matrix requires no interchanges and so has an LU-factorization. Here is the precise result.

Theorem 2.7.2
Suppose an m×n matrix A is carried to a row-echelon matrix U via the gaussian algorithm.
Let P1, P2, . . . , Ps be the elementary matrices corresponding (in order) to the row
interchanges used, and write P = Ps · · ·P2P1. (If no interchanges are used take P = Im.) Then:

1. PA is the matrix obtained from A by doing these interchanges (in order) to A.

2. PA has an LU-factorization.

The proof is given at the end of this section.
A matrix P that is the product of elementary matrices corresponding to row interchanges is

called a permutation matrix. Such a matrix is obtained from the identity matrix by arranging
the rows in a different order, so it has exactly one 1 in each row and each column, and has zeros
elsewhere. We regard the identity matrix as a permutation matrix. The elementary permutation
matrices are those obtained from I by a single row interchange, and every permutation matrix is a
product of elementary ones.

Example 2.7.5

If A =


0 0 −1 2

−1 −1 1 2
2 1 −3 6
0 1 −1 4

, find a permutation matrix P such that PA has an

LU-factorization, and then find the factorization.

Solution. Apply the gaussian algorithm to A:

A ∗−→


−1 −1 1 2

0 0 −1 2
2 1 −3 6
0 1 −1 4

→


1 1 −1 −2
0 0 −1 2
0 −1 −1 10
0 1 −1 4

 ∗−→


1 1 −1 −2
0 −1 −1 10
0 0 −1 2
0 1 −1 4



→


1 1 −1 −2
0 1 1 −10
0 0 −1 2
0 0 −2 14

→


1 1 −1 −2
0 1 1 −10
0 0 1 −2
0 0 0 10


Two row interchanges were needed (marked with ∗), first rows 1 and 2 and then rows 2 and
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3. Hence, as in Theorem 2.7.2,

P =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

=


0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1


If we do these interchanges (in order) to A, the result is PA. Now apply the LU-algorithm to
PA:

PA =


−1 −1 1 2

2 1 −3 6
0 0 −1 2
0 1 −1 4

→


1 1 −1 −2
0 −1 −1 10
0 0 −1 2
0 1 −1 4

→


1 1 −1 −2
0 1 1 −10
0 0 −1 2
0 0 −2 14



→


1 1 −1 −2
0 1 1 −10
0 0 1 −2
0 0 0 10

→


1 1 −1 −2
0 1 1 −10
0 0 1 −2
0 0 0 1

=U

Hence, PA = LU , where L =


−1 0 0 0

2 −1 0 0
0 0 −1 0
0 1 −2 10

 and U =


1 1 −1 −2
0 1 1 −10
0 0 1 −2
0 0 0 1

.

Theorem 2.7.2 provides an important general factorization theorem for matrices. If A is any
m×n matrix, it asserts that there exists a permutation matrix P and an LU-factorization PA = LU .
Moreover, it shows that either P = I or P = Ps · · ·P2P1, where P1, P2, . . . , Ps are the elementary
permutation matrices arising in the reduction of A to row-echelon form. Now observe that P−1

i = Pi
for each i (they are elementary row interchanges). Thus, P−1 = P1P2 · · ·Ps, so the matrix A can be
factored as

A = P−1LU

where P−1 is a permutation matrix, L is lower triangular and invertible, and U is a row-echelon
matrix. This is called a PLU-factorization of A.

The LU-factorization in Theorem 2.7.1 is not unique. For example,[
1 0
3 2

][
1 −2 3
0 0 0

]
=

[
1 0
3 1

][
1 −2 3
0 0 0

]
However, it is necessary here that the row-echelon matrix has a row of zeros. Recall that the rank
of a matrix A is the number of nonzero rows in any row-echelon matrix U to which A can be carried
by row operations. Thus, if A is m×n, the matrix U has no row of zeros if and only if A has rank m.
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Theorem 2.7.3
Let A be an m×n matrix that has an LU-factorization

A = LU

If A has rank m (that is, U has no row of zeros), then L and U are uniquely determined by A.

Proof. Suppose A = MV is another LU-factorization of A, so M is lower triangular and invertible
and V is row-echelon. Hence LU = MV , and we must show that L = M and U = V . We write
N = M−1L. Then N is lower triangular and invertible (Lemma 2.7.1) and NU =V , so it suffices to
prove that N = I. If N is m×m, we use induction on m. The case m = 1 is left to the reader. If
m > 1, observe first that column 1 of V is N times column 1 of U . Thus if either column is zero, so is
the other (N is invertible). Hence, we can assume (by deleting zero columns) that the (1, 1)-entry
is 1 in both U and V .

Now we write N =

[
a 0
X N1

]
, U =

[
1 Y
0 U1

]
, and V =

[
1 Z
0 V1

]
in block form. Then NU =V

becomes
[

a aY
X XY +N1U1

]
=

[
1 Z
0 V1

]
. Hence a = 1, Y = Z, X = 0, and N1U1 =V1. But N1U1 =V1

implies N1 = I by induction, whence N = I.

If A is an m×m invertible matrix, then A has rank m by Theorem 2.4.5. Hence, we get the
following important special case of Theorem 2.7.3.

Corollary 2.7.1

If an invertible matrix A has an LU-factorization A = LU , then L and U are uniquely
determined by A.

Of course, in this case U is an upper triangular matrix with 1s along the main diagonal.

Proofs of Theorems

Proof of the LU-Algorithm. If c1, c2, . . . , cr are columns of lengths m, m− 1, . . . , m− r+ 1,
respectively, write L(m)(c1, c2, . . . , cr) for the lower triangular m×m matrix obtained from Im by
placing c1, c2, . . . , cr at the bottom of the first r columns of Im.

Proceed by induction on n. If A = 0 or n = 1, it is left to the reader. If n > 1, let c1 denote the
leading column of A and let k1 denote the first column of the m×m identity matrix. There exist
elementary matrices E1, . . . , Ek such that, in block form,

(Ek · · ·E2E1)A =

[
0 k1

X1
A1

]
where (Ek · · ·E2E1)c1 = k1

Moreover, each E j can be taken to be lower triangular (by assumption). Write

G = (Ek · · ·E2E1)
−1 = E−1

1 E−1
2 · · ·E−1

k
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Then G is lower triangular, and Gk1 = c1. Also, each E j (and so each E−1
j ) is the result of either

multiplying row 1 of Im by a constant or adding a multiple of row 1 to another row. Hence,

G = (E−1
1 E−1

2 · · ·E−1
k )Im =

[
c1

0
Im−1

]
in block form. Now, by induction, let A1 = L1U1 be an LU-factorization of A1, where L1 =
L(m−1) [c2, . . . , cr] and U1 is row-echelon. Then block multiplication gives

G−1A =

[
0 k1

X1
L1U1

]
=

[
1 0
0 L1

][
0 1 X1
0 0 U1

]

Hence A = LU , where U =

[
0 1 X1
0 0 U1

]
is row-echelon and

L =

[
c1

0
Im−1

][
1 0
0 L1

]
=

[
c1

0
L

]
= L(m) [c1, c2, . . . , cr]

This completes the proof.

Proof of Theorem 2.7.2. Let A be a nonzero m× n matrix and let k j denote column j of Im.
There is a permutation matrix P1 (where either P1 is elementary or P1 = Im) such that the first
nonzero column c1 of P1A has a nonzero entry on top. Hence, as in the LU-algorithm,

L(m) [c1]
−1 ·P1 ·A =

[
0 1 X1
0 0 A1

]
in block form. Then let P2 be a permutation matrix (either elementary or Im) such that

P2 ·L(m) [c1]
−1 ·P1 ·A =

[
0 1 X1
0 0 A′

1

]
and the first nonzero column c2 of A′

1 has a nonzero entry on top. Thus,

L(m) [k1, c2]
−1 ·P2 ·L(m) [c1]

−1 ·P1 ·A =

 0 1 X1

0 0
0 1 X2
0 0 A2


in block form. Continue to obtain elementary permutation matrices P1, P2, . . . , Pr and columns
c1, c2, . . . , cr of lengths m, m−1, . . . , such that

(LrPrLr−1Pr−1 · · ·L2P2L1P1)A =U

where U is a row-echelon matrix and L j = L(m)
[
k1, . . . , k j−1, c j

]−1 for each j, where the notation
means the first j− 1 columns are those of Im. It is not hard to verify that each L j has the form
L j = L(m)

[
k1, . . . , k j−1, c′j

]
where c′j is a column of length m− j + 1. We now claim that each

permutation matrix Pk can be “moved past” each matrix L j to the right of it, in the sense that

PkL j = L′
jPk
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where L′
j = L(m)

[
k1, . . . , k j−1, c′′j

]
for some column c′′j of length m− j+1. Given that this is true,

we obtain a factorization of the form

(LrL′
r−1 · · ·L′

2L′
1)(PrPr−1 · · ·P2P1)A =U

If we write P = PrPr−1 · · ·P2P1, this shows that PA has an LU-factorization because LrL′
r−1 · · ·L′

2L′
1 is

lower triangular and invertible. All that remains is to prove the following rather technical result.

Lemma 2.7.2
Let Pk result from interchanging row k of Im with a row below it. If j < k, let c j be a column
of length m− j+1. Then there is another column c′j of length m− j+1 such that

Pk ·L(m)
[
k1, . . . , k j−1, c j

]
= L(m)

[
k1, . . . , k j−1, c′j

]
·Pk

The proof is left as Exercise 2.7.11.

Exercises for 2.7

Exercise 2.7.1 Find an LU-factorization of the
following matrices.

a.

 2 6 −2 0 2
3 9 −3 3 1

−1 −3 1 −3 1



b.

 2 4 2
1 −1 3

−1 7 −7



c.


2 6 −2 0 2
1 5 −1 2 5
3 7 −3 −2 5

−1 −1 1 2 3



d.


−1 −3 1 0 −1

1 4 1 1 1
1 2 −3 −1 1
0 −2 −4 −2 0



e.


2 2 4 6 0 2
1 −1 2 1 3 1

−2 2 −4 −1 1 6
0 2 0 3 4 8

−2 4 −4 1 −2 6



f.


2 2 −2 4 2
1 −1 0 2 1
3 1 −2 6 3
1 3 −2 2 1



b.

 2 0 0
1 −3 0

−1 9 1




1 2 1

0 1 −2
3

0 0 0



d.


−1 0 0 0

1 1 0 0
1 −1 1 0
0 −2 0 1




1 3 −1 0 1
0 1 2 1 0
0 0 0 0 0
0 0 0 0 0



f.


2 0 0 0
1 −2 0 0
3 −2 1 0
0 2 0 1




1 1 −1 2 1

0 1 −1
2 0 0

0 0 0 0 0

0 0 0 0 0


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Exercise 2.7.2 Find a permutation matrix P and
an LU-factorization of PA if A is: 0 0 2

0 −1 4
3 5 1

a)

 0 −1 2
0 0 4

−1 2 1

b)


0 −1 2 1 3

−1 1 3 1 4
1 −1 −3 6 2
2 −2 −4 1 0

c)


−1 −2 3 0

2 4 −6 5
1 1 −1 3
2 5 −10 1

d)

b. P =

 0 0 1
1 0 0
0 1 0


PA =

 −1 2 1
0 −1 2
0 0 4


=

 −1 0 0
0 −1 0
0 0 4

 1 −2 −1
0 1 2
0 0 1



d. P =


1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0



PA =


−1 −2 3 0

1 1 −1 3
2 5 −10 1
2 4 −6 5



=


−1 0 0 0

1 −1 0 0
2 1 −2 0
2 0 0 5




1 2 −3 0
0 1 −2 −3
0 0 1 −2
0 0 0 1


Exercise 2.7.3 In each case use the given LU-
decomposition of A to solve the system Ax = b by
finding y such that Ly = b, and then x such that
Ux = y:

a. A =

 2 0 0
0 −1 0
1 1 3

 1 0 0 1
0 0 1 2
0 0 0 1

;

b =

 1
−1

2



b. A =

 2 0 0
1 3 0

−1 2 1

 1 1 0 −1
0 1 0 1
0 0 0 0

;

b =

 −2
−1

1



c. A =


−2 0 0 0

1 −1 0 0
−1 0 2 0

0 1 0 2




1 −1 2 1

0 1 1 −4

0 0 1 − 1
2

0 0 0 1

;

b =


1

−1
2
0



d. A =


2 0 0 0
1 −1 0 0

−1 1 2 0
3 0 1 −1




1 −1 0 1
0 1 −2 −1
0 0 1 1
0 0 0 0

;

b =


4

−6
4
5



b. y =

 −1
0
0

x =


−1+2t

−t
s
t

s and t arbitrary

d. y =


2
8

−1
0

x =


8−2t
6− t
−1− t

t

 t arbitrary

Exercise 2.7.4 Show that
[

0 1
1 0

]
= LU is im-

possible where L is lower triangular and U is upper
triangular.

Exercise 2.7.5 Show that we can accomplish any
row interchange by using only row operations of
other types.[

R1
R2

]
→

[
R1 +R2

R2

]
→

[
R1 +R2
−R1

]
→

[
R2
−R1

]
→[

R2
R1

]
Exercise 2.7.6
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a. Let L and L1 be invertible lower triangular ma-
trices, and let U and U1 be invertible upper
triangular matrices. Show that LU = L1U1 if
and only if there exists an invertible diagonal
matrix D such that L1 = LD and U1 = D−1U .
[Hint: Scrutinize L−1L1 =UU−1

1 .]

b. Use part (a) to prove Theorem 2.7.3 in the
case that A is invertible.

b. Let A = LU = L1U1 be LU-factorizations of the
invertible matrix A. Then U and U1 have no
row of zeros and so (being row-echelon) are
upper triangular with 1’s on the main diag-
onal. Thus, using (a.), the diagonal matrix
D =UU−1

1 has 1’s on the main diagonal. Thus
D = I, U =U1, and L = L1.

Exercise 2.7.7 Prove Lemma 2.7.1(1).
[Hint: Use block multiplication and induction.]

If A =

[
a 0
X A1

]
and B =

[
b 0
Y B1

]
in block form,

then AB =

[
ab 0

Xb+A1Y A1B1

]
, and A1B1 is lower

triangular by induction.

Exercise 2.7.8 Prove Lemma 2.7.1(2). [Hint: Use
block multiplication and induction.]

Exercise 2.7.9 A triangular matrix is called unit
triangular if it is square and every main diagonal

element is a 1.

a. If A can be carried by the gaussian algo-
rithm to row-echelon form using no row in-
terchanges, show that A = LU where L is unit
lower triangular and U is upper triangular.

b. Show that the factorization in (a.) is unique.

b. Let A = LU = L1U1 be two such factoriza-
tions. Then UU−1

1 = L−1L1; write this matrix
as D =UU−1

1 = L−1L1. Then D is lower trian-
gular (apply Lemma 2.7.1 to D = L−1L1); and
D is also upper triangular (consider UU−1

1 ).
Hence D is diagonal, and so D = I because L−1

and L1 are unit triangular. Since A = LU ; this
completes the proof.

Exercise 2.7.10 Let c1, c2, . . . , cr be columns
of lengths m, m− 1, . . . , m− r + 1. If k j denotes
column j of Im, show that L(m) [c1, c2, . . . , cr] =
L(m) [c1]L(m) [k1, c2]L(m) [k1, k2, c3] · · ·
L(m) [k1, k2, . . . , kr−1, cr]. The notation is as in the
proof of Theorem 2.7.2. [Hint: Use induction on m
and block multiplication.]

Exercise 2.7.11 Prove Lemma 2.7.2. [Hint: P−1
k =

Pk. Write Pk =

[
Ik 0
0 P0

]
in block form where P0 is

an (m− k)× (m− k) permutation matrix.]
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